Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Winger, Benjamin M; Edwards, Scott V (Ed.)Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.more » « less
-
Here we present length-weight relationships (LWR) for 11 reef fish species from eight islands in French Polynesia. A total of 1,930 fish were collected from five islands in the Society Archipelago (Moorea, Tahiti, Raiatea, Huahine, Tetiaroa) and in three atolls of the Tuamotu Archipelago (Takapoto, Tikehau, and Rangiroa). These fishes span trophic levels, including planktivores, herbivores, and carnivores, and are among the most abundant species for the region. Estimates include LWRs for species never previously published or available in the literature or accessible databases. Measurements of total length (TL: 0.1 cm precision) and total weight (W: 0.01 g precision) were taken. These estimates increase the number of available and robust LWRs for coral reef fishes, providing a better understanding of patterns of growth for these species. With a particular focus on small-bodied species, among the most abundant observed in underwater visual censuses, these estimates will allow marine resource managers and local scientists to characterize fish biomass in French Polynesia with greater precision.more » « less
-
Free, publicly-accessible full text available September 11, 2026
-
The Michigan–Ontario Ozone Source Experiment (MOOSE) is an international air quality field study that took place at the US–Canada Border region in the ozone seasons of 2021 and 2022. MOOSE addressed binational air quality issues stemming from lake breeze phenomena and transboundary transport, as well as local emissions in southeast Michigan and southern Ontario. State-of-the-art scientific techniques applied during MOOSE included the use of multiple advanced mobile laboratories equipped with real-time instrumentation; high-resolution meteorological and air quality models at regional, urban, and neighborhood scales; daily real-time meteorological and air quality forecasts; ground-based and airborne remote sensing; instrumented Unmanned Aerial Vehicles (UAVs); isotopic measurements of reactive nitrogen species; chemical fingerprinting; and fine-scale inverse modeling of emission sources. Major results include characterization of southeast Michigan as VOC-limited for local ozone formation; discovery of significant and unaccounted formaldehyde emissions from industrial sources; quantification of methane emissions from landfills and leaking natural gas pipelines; evaluation of solvent emission impacts on local and regional ozone; characterization of the sources of reactive nitrogen and PM2.5; and improvements to modeling practices for meteorological, receptor, and chemical transport models.more » « less
-
R. Causse (Ed.)Here we present length-weight relationships (LWR) for 11 reef fish species from eight islands in French Polynesia. A total of 1,930 fish were collected from five islands in the Society Archipelago (Moorea, Tahiti, Raiatea, Huahine, Tetiaroa) and in three atolls of the Tuamotu Archipelago (Takapoto, Tikehau, and Rangiroa). These fishes span trophic levels, including planktivores, herbivores, and carnivores, and are among the most abundant species for the region. Estimates include LWRs for species never previously published or available in the literature or accessible databases. Measurements of total length (TL: 0.1 cm precision) and total weight (W: 0.01 g precision) were taken. These estimates increase the number of available and robust LWRs for coral reef fishes, providing a better understanding of patterns of growth for these species. With a particular focus on small-bodied species, among the most abundant observed in underwater visual censuses, these estimates will allow marine resource managers and local scientists to characterize fish biomass in French Polynesia with greater precision.more » « less
-
Recurring slow slip along near-trench megathrust faults occurs at many subduction zones, but for unknown reasons, this process is not universal. Fluid overpressures are implicated in encouraging slow slip; however, links between slow slip, fluid content, and hydrogeology remain poorly known in natural systems. Three-dimensional seismic imaging and ocean drilling at the Hikurangi margin reveal a widespread and previously unknown fluid reservoir within the extensively hydrated (up to 47 vol % H2O) volcanic upper crust of the subducting Hikurangi Plateau large igneous province. This ~1.5 km thick volcaniclastic upper crust readily dewaters with subduction but retains half of its fluid content upon reaching regions with well-characterized slow slip. We suggest that volcaniclastic-rich upper crust at volcanic plateaus and seamounts is a major source of water that contributes to the fluid budget in subduction zones and may drive fluid overpressures along the megathrust that give rise to frequent shallow slow slip.more » « less
-
ABSTRACT Double detonations of sub-Chandrasekhar mass white dwarfs are a promising explosion scenario for Type Ia supernovae, whereby a detonation in a surface helium shell triggers a secondary detonation in a carbon-oxygen core. Recent work has shown that low-mass helium shell models reproduce observations of normal SNe Ia. We present 3D radiative transfer simulations for a suite of 3D simulations of the double detonation explosion scenario for a range of shell and core masses. We find light curves broadly able to reproduce the faint end of the width–luminosity relation shown by SNe Ia, however, we find that all of our models show extremely red colours, not observed in normal SNe Ia. This includes our lowest mass helium shell model. We find clear Ti ii absorption features in the model spectra, which would lead to classification as peculiar SNe Ia, as well as line blanketing in some lines of sight by singly ionized Cr and Fe-peak elements. Our radiative transfer simulations show that these explosion models remain promising to explain peculiar SNe Ia. Future full non-LTE simulations may improve the agreement of these explosion models with observations of normal SNe Ia.more » « less
-
NA (Ed.)Abstract Subduction megathrusts exhibit a range of slip behaviors spanning from large earthquakes to aseismic creep, yet what controls spatial variations in the dominant slip mechanism remains unresolved. We present multichannel seismic images that reveal a correlation between the lithologic homogeneity of the megathrust and its slip behavior at a subduction zone that is world renowned for its lateral slip behavior transition, the Hikurangi margin. Where the megathrust exhibits shallow slow-slip in the central Hikurangi margin, the protolith of the megathrust changes ~10 km downdip of the deformation front, transitioning from pelagic carbonates to compositionally heterogeneous volcaniclastics. At the locked southern Hikurangi segment, the megathrust forms consistently within pelagic carbonates above thickened nonvolcanic siliciclastic sediments (unit MES), which subduct beyond 75 km horizontally. The presence of the MES layer plays a key role in smoothing over rough volcanic topography and establishing a uniform spatial distribution of lithologies and frictional properties that may enable large earthquake ruptures.more » « less
An official website of the United States government

Full Text Available